

Armv8-R AArch64 Software Stack

Contents

	Introduction
	Overview

	Audience

	Use Cases Overview

	High Level Architecture

	Features Overview

	Documentation Overview

	Repository Structure

	Repository License

	Issue Reporting

	Feedback and Support

	Maintainer(s)

	Reference

	User Guide
	Reproduce

	Extend

	Borrow

	Developer Manual
	Boot Process

	Components

	Yocto Layers

	Armv8-R AArch64 Extras Layer (meta-armv8r64-extras)

	Applications

	Validation

	Codeline Management
	Overview

	Yocto Release Process

	Armv8-R AArch64 Software Stack Branch and Release Process

	License
	SPDX Identifiers

	Changelog & Release Notes
	Release 5.0 - InterVM Communication with Linux Containers

	Release 4.0 - Xen

	Release 3 - UEFI

	Release 2 - SMP

	Release 1 - Single Core

Introduction

Overview

The Armv8-R AArch64 Software Stack (referred to as Software Stack
hereafter) provides a collection of software examples intended to run on the
Armv8-R AEM FVP 1, which is an implementation of the Armv8-R AArch64
architecture 2. Together, they are intended to enable exploration of the
general Armv8-R AArch64 architecture as well as a specific implementation -
Arm® Cortex®-R82 3.

The software provides example deployments of two classes of operating system;
Linux as a Rich OS, and Zephyr as an RTOS (Real-Time Operating System) and
either can run as bare-metal or under virtualization provided by Xen as a Type-1
hypervisor.

The Poky Linux distribution provides a platform for hosting and deploying user
applications with OCI (Open Container Initiative) compliant containers (via
Docker) as well as network connectivity. Additionally, the Xen hypervisor
provides a communication path for data transfer between the VM guests.

The Yocto layers which define the project contain all the necessary instructions
to fetch and build the source, as well as to download the FVP model and launch
the examples.

Fixed Virtual Platforms (FVP) are complete simulations of an Arm system,
including processor, memory and peripherals. These are set out in a
“programmer’s view”, which gives you a comprehensive model on which to build and
test your software. The Fast Models FVP Reference Guide 4 provides the
necessary details. The Armv8-R AEM FVP is a free of charge Armv8-R Fixed Virtual
Platform. It supports the latest Armv8-R feature set.

This document describes how to build and run the Armv8-R AArch64 Software Stack
on the Armv8-R AEM FVP (AArch64) platform. It also covers how to extend features
and configurations based on the Software Stack.

Audience

This document is intended for software, hardware, and system engineers who are
planning to use the Armv8-R AArch64 Software Stack, and for anyone who wants to
know more about it.

This document describes how to build an image for Armv8-R AArch64 using a Yocto
Project 5 build environment. Basic instructions can be found in the Yocto
Project Quick Start 6 document.

In addition to having Yocto related knowledge, the target audience also need to
have a certain understanding of the following components:

	Arm® architectures 7

	Bootloader (boot-wrapper-aarch64 8 and U-Boot 9)

	Linux kernel 10

	Zephyr 11

	Virtualization technology and Xen 12 hypervisor

Use Cases Overview

There are 3 sub-stacks supported in the Software Stack for either baremetal
solution or virtualization solution separately:

	Baremetal solution (without hardware virtualization support)

	Baremetal Linux stack

Boot a Linux based Rich OS (via U-Boot with UEFI) to command prompt

	Baremetal Zephyr Stack

Boot Zephyr RTOS directly and run a sample application

	Virtualization solution

	Virtualization stack

Boot the Xen hypervisor (via U-Boot without UEFI) and start two isolated
domains to run Linux Rich OS and Zephyr RTOS in parallel on the fixed
number of cores statically allocated by the Xen hypervisor.

In this stack, Xen provides static shared memory and static event
channel support so that the Linux and Zephyr domains running on it can
communicate with each other using the RPMsg (Remote Processor Messaging)
protocol implemented in the OpenAMP (Open Asymmetric Multi-Processing)
framework.

In addition, the Linux domain can also run a container hosted Nginx web
server to serve data for external users visiting through the HTTP
protocol.

Instructions for achieving these use cases are given in the article
Reproduce, subject to the relevant assumed technical
knowledge as listed at the Audience section in this document.

High Level Architecture

The high-level architecture corresponding to the three use cases (as described
in the Use Cases Overview section above) supported by this Software Stack is
as follows:

The diagram below gives an overview of the components and layers in the
implementation of Virtualization stack with Xen hypervisor, adding the main
modules required to implement the following two scenarios:

	Inter-VM communication with each other between the two domains running on
the Xen hypervisor

	Exposing data with a docker container hosted Nginx web server

Inter-VM communication is implemented using the OpenAMP framework in the
application layer, and supported by the static shared memory and static event
channel mechanism provided by Xen in the backend.

[image: Arm v8r64 architecture hypervisor with inter-VM communication and docker]

The diagram below gives an overview of the components and layers in the
implementation of Virtualization stack.

[image: Arm v8r64 architecture hypervisor]

The diagram below gives an overview of the components and layers in the
Baremetal Linux stack.

[image: Arm v8r64 architecture Linux]

The diagram below gives an overview of the components and layers in the
Baremetal Zephyr stack.

[image: Arm v8r64 architecture Zephyr]

Features Overview

This Software Stack implements the following major features at system level:

	A Zephyr RTOS running on baremetal supporting SMP (Symmetric
Multi-Processing)

	A standard Linux Rich OS running on baremetal supporting the following
functions:

	Booting Linux kernel using U-Boot UEFI (Unified Extensible Firmware
Interface) and Grub2

	SMP (Symmetric Multi-Processing)

	Test suite that can validate the basic functionalities

	A dual-OS system - Zephyr as the RTOS and Linux as the Rich OS - running in
parallel using the Xen hypervisor, with supporting the following functions:

	Booting dom0less Xen from U-Boot

	SMP in Xen hypervisor and the OSes (both Linux and Zephyr) running in Xen
domains

	Inter-VM communication using RPMsg protocol provided by the OpenAMP
framework together with the static shared memory and static event channel
provided by Xen

	Docker in the Linux domain, showing standard application deployments via
containers

	A docker container hosted Nginx web server to serve data for external
users visiting through the HTTP protocol

	Test suite that can validate the functionalities in Zephyr and Linux, as
well as the communication between the two OSes and docker running in the
Linux domain

	Classic sample applications in Zephyr

Some other features at component level include:

	Device tree overlay to apply changes on the fly (provided by U-Boot)

	Device pass through support for virtio-net, virtio-blk, virtio-rng,
virtio-9p and virtio-rtc (provided by Xen to the Linux kernel)

	PSCI service (provided by boot-wrapper-aarch64)

	Boot from S-EL2 (provided by boot-wrapper-aarch64, U-Boot and Xen)

	Boot-wrapper-aarch64 (as an alternative solution to Trusted-Firmware) and
hypervisor (Xen) co-existence in S-EL2 at runtime

	Static shared memory in Xen hypervisor allowing users to statically set up
shared memory on a dom0less system, enabling domains to do shm-based
communication

	Static event channel established in Xen hypervisor for event notification
between two domains

Documentation Overview

The documentation is structured as follows:

	User Guide

Provides the guide to setup environment, build and run the Software Stack on
the target platform, run the provided test suite and validate supported
functionalities. Also includes the guidance for how to use extra features,
customize configurations, and reuse the components in this Software Stack.

	Developer Manual

Provides more advanced developer-focused details about this Software Stack,
include its implementation, and dependencies, etc.

	Codeline Management

Describes the Armv8-R AArch64 Software Stack’s branches and release process.

	License

Defines the license under which this Software Stack is provided.

	Changelog & Release Notes

Documents new features, bug fixes, known issues and limitations, and any other
changes provided under each release.

Repository Structure

The Armv8-R AArch64 Software Stack is provided through the v8r64 repository
13, which is structured as follows:

	meta-armv8r64-extras

Yocto layer with the target platform (fvp-baser-aemv8r64 14) extensions
for Armv8-R AArch64. This layer extends the meta-arm-bsp 15 layer in the
meta-arm 16 repository. It aims to release the updated and new Yocto
Project recipes and machine configurations for Armv8-R AArch64 that are not
available in the existing meta-arm and meta-arm-bsp layers in the Yocto
Project. This layer also provides image recipes that include all the
components needed for a system image to boot, making it easier for the
user. Components can be built individually or through an image recipe, which
pulls all the components required in an image into one build process.

	documentation

Directory which contains the documentation sources, defined in
reStructuredText (.rst) format for rendering via Sphinx 17.

	config

Directory which contains configuration files for running tools on the v8r64
repository, such as files for running automated quality-assurance checks.

	components

Directory containing source code for components which can either be used
directly or as part of the Yocto BSP layer or the Yocto meta-armv8r64-extras
layer.

The Yocto layers which are provided by meta-armv8r64-extras are detailed with
the layer structure and dependencies in Yocto Layers.

Repository License

The repository’s standard license is the MIT license (more details in
License), under which most of the repository’s content is
provided. Exceptions to this standard license relate to files that represent
modifications to externally licensed works (for example, patch files). These
files may therefore be included in the repository under alternative licenses in
order to be compliant with the licensing requirements of the associated external
works.

Contributions to the project should follow the same licensing arrangement.

Issue Reporting

To report issues with the repository such as potential bugs, security concerns,
or feature requests, please submit an Issue via GitLab Issues [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/issues], following the
project’s Issue template.

Feedback and Support

To request support please contact Arm at support@arm.com. Arm licensees may also
contact with Arm via their partner managers.

Maintainer(s)

	Robbie Cao <robbie.cao@arm.com>

Reference

	1

	https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models

	2

	https://developer.arm.com/documentation/ddi0600/ac

	3

	https://developer.arm.com/Processors/Cortex-R82

	4

	https://developer.arm.com/docs/100966/latest

	5

	https://www.yoctoproject.org/

	6

	https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html

	7

	https://developer.arm.com/architectures

	8

	https://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git/

	9

	https://www.denx.de/wiki/U-Boot

	10

	https://www.kernel.org/

	11

	https://www.zephyrproject.org/

	12

	https://xenproject.org/

	13

	https://gitlab.arm.com/automotive-and-industrial/v8r64

	14

	https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/documentation/fvp-baser-aemv8r64.md

	15

	https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp?h=langdale

	16

	https://git.yoctoproject.org/meta-arm/

	17

	https://www.sphinx-doc.org/

User Guide

Contents

	Reproduce

Instructions for setting up the build environment, checking out code,
building, running and validating the key use cases.

	Extend

Guides showing how to use extra features, customize configurations in this
Software Stack.

	Borrow

A deeper explanation of how to reuse the components, patches in this Software
Stack.

Reproduce

This document provides the instructions for setting up the build environment,
checking out code, building, running and validating the key use cases.

Environment Setup

The following instructions have been tested on hosts running Ubuntu 20.04.
Install the required packages for the build host:
https://docs.yoctoproject.org/4.1.1/singleindex.html#required-packages-for-the-build-host

Kas is a setup tool for bitbake based projects. The minimal supported version is
3.0.2 (version 3.1 was used during the development), install it like so:

pip3 install --user --upgrade kas==3.1

For more details on kas, see https://kas.readthedocs.io/.

To build the recipe for the FVP_Base_AEMv8R model itself, you also need to
accept the EULA 1 by setting the following environment variable:

export FVP_BASE_R_ARM_EULA_ACCEPT="True"

To fetch and build the ongoing development of this Software Stack, follow the
instructions in the below sections of this document.

Note

The host machine should have at least 85 GBytes of free disk space for the
next steps to work correctly.

Download

Fetch the v8r64 repository into a build directory:

mkdir -p ~/fvp-baser-aemv8r64-build
cd ~/fvp-baser-aemv8r64-build
git clone https://gitlab.arm.com/automotive-and-industrial/v8r64 -b v5.0

Build and Run

The Software Stack supports building and running three sub-stacks: Baremetal
Zephyr, Baremetal Linux and Virtualization, which are associated with the use
cases described in Use Cases Overview. Instructions to build and run
these three sub-stacks are as below:

Baremetal Zephyr

Build and run with the below commands:

cd ~/fvp-baser-aemv8r64-build

Build
kas build v8r64/meta-armv8r64-extras/kas/baremetal-zephyr.yml \
 --target zephyr-synchronization

Output images will be located at
build/tmp_baremetal-zephyr/deploy/images/fvp-baser-aemv8r64/

Run
kas shell -k v8r64/meta-armv8r64-extras/kas/baremetal-zephyr.yml \
 -c "../layers/meta-arm/scripts/runfvp --verbose --console"

To finish the FVP emulation, you need to close the telnet session:

	Escape to telnet console with ctrl+].

	Run quit to close the session.

A different sample application can be selected by changing the Kas --target
flag value, e.g.:

kas build v8r64/meta-armv8r64-extras/kas/baremetal-zephyr.yml \
 --target zephyr-helloworld

There are 3 supported targets zephyr-helloworld, zephyr-synchronization
and zephyr-philosophers. See the Zephyr section for more information.

Baremetal Linux

Build and run with the below commands:

cd ~/fvp-baser-aemv8r64-build

Build
kas build v8r64/meta-armv8r64-extras/kas/baremetal-linux.yml

Output images will be located at
build/tmp_baremetal-linux/deploy/images/fvp-baser-aemv8r64/

Run
kas shell -k v8r64/meta-armv8r64-extras/kas/baremetal-linux.yml \
 -c "../layers/meta-arm/scripts/runfvp --verbose --console"

Virtualization

Build and run with the below commands:

cd ~/fvp-baser-aemv8r64-build

Build
kas build v8r64/meta-armv8r64-extras/kas/virtualization.yml

Output images are located at
build/tmp_virtualization/deploy/images/fvp-baser-aemv8r64/

Run
kas shell -k v8r64/meta-armv8r64-extras/kas/virtualization.yml \
 -c "../layers/meta-arm/scripts/runfvp --verbose"

Check Xen output.
telnet localhost 5000

Check guest OS in another terminals after Xen started
Zephyr
The zephyr-rpmsg-demo application starts automatically.
telnet localhost 5001

Linux
The rpmsg-demo application starts automatically.
telnet localhost 5002

Note

When --console is specified, port 5002 (which exposes the Linux
terminal) is automatically connected through telnet. In this case, please
do not connect to port 5002 again, as another connection to port 5002
terminates the FVP. If no Linux log is printed, connect to port 5000
(which exposes the Xen terminal) in another terminal. More details of
runfvp can be found at runfvp.md [https://git.yoctoproject.org/meta-arm/tree/documentation/runfvp.md?h=langdale].

Note

When running the runfvp command with the --verbose option enabled,
you will see the following output:

terminal_0: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5001
terminal_2: Listening for serial connection on port 5002
terminal_3: Listening for serial connection on port 5003

Among them, port 5000 is assigned to the Xen hypervisor, 5001 to the
Zephyr domain, 5002 to the Linux domain, and 5003 unused. If these
ports are already occupied (for example, there is already a runfvp
instance running), then the port number will automatically increase by 4,
that is, ports 5004 ~ 5007 will be assigned. In this case, checking
the output from the Zephyr and Linux domains requires using ports 5005
and 5006:

telnet localhost 5005
telnet localhost 5006

If any port(s) in 5000 ~ 5003 is (are) used by other programs, the
FVP will try to find 4 available ports starting from 5000. Be sure to
check the log of runfvp (with --verbose) to determine the correct
port numbers, then apply the determined port number to the telnet
command.

By default, the rpmsg-demo application and the Nginx web server start
automatically. rpmsg-demo sends status data from the Zephyr domain to the
Linux domain, and saves the data to zephyr-status.html. The files can be
visited through Nginx web server using the following commands in the Linux
domain.

The Nginx docker container starts automatically in Linux.
Check that Nginx is working in Linux.
wget http://localhost/index.html

Check the rpmsg-demo output in Linux. rpmsg-demo updates this file
periodically.
wget http://localhost/zephyr-status.html

These pages can also be visited from a web browser in the host that is running
FVP. By default port 80 in FVP is mapped to port 8080 on host in the
Virtualization stack. To browse these pages in the host web browser, use
http://localhost:8080/index.html and http://localhost:8080/zephyr-status.html
respectively.

More details of Demo Applications can be found in Applications
section.

Validate

The Software Stack contains test suite which are enabled using the environment
variable TESTIMAGE_AUTO=1. They can be included into the target build to
automatically validate the functionality of each stack. The test cases use the
Yocto image testing feature 2 to boot the FVP and validate the output.

Baremetal Zephyr

For the Zephyr RTOS, tests are provided to validate the three sample
applications supported in this Software Stack. Use the following command to
build and run the tests:

TESTIMAGE_AUTO=1 kas build v8r64/meta-armv8r64-extras/kas/baremetal-zephyr.yml

An example of the test suite output is as follows:

Creating terminal default on terminal_0
Skipping - not zephyr-helloworld
Skipping - not zephyr-philosophers
RESULTS:
RESULTS - zephyr_v8r64.ZephyrTests.test_synchronization: PASSED (3.79s)
RESULTS - zephyr_v8r64.ZephyrTests.test_helloworld: SKIPPED (0.00s)
RESULTS - zephyr_v8r64.ZephyrTests.test_philosophers: SKIPPED (0.00s)
SUMMARY:
zephyr-synchronization () - Ran 3 tests in 3.793s
zephyr-synchronization - OK - All required tests passed (successes=1, skipped=2, failures=0, errors=0)
Creating terminal default on terminal_0
Skipping - not zephyr-helloworld
Skipping - not zephyr-synchronization
RESULTS:
RESULTS - zephyr_v8r64.ZephyrTests.test_philosophers: PASSED (0.64s)
RESULTS - zephyr_v8r64.ZephyrTests.test_helloworld: SKIPPED (0.00s)
RESULTS - zephyr_v8r64.ZephyrTests.test_synchronization: SKIPPED (0.00s)
SUMMARY:
zephyr-philosophers () - Ran 3 tests in 0.638s
zephyr-philosophers - OK - All required tests passed (successes=1, skipped=2, failures=0, errors=0)
Creating terminal default on terminal_0
Skipping - not zephyr-philosophers
Skipping - not zephyr-synchronization
RESULTS:
RESULTS - zephyr_v8r64.ZephyrTests.test_helloworld: PASSED (0.73s)
RESULTS - zephyr_v8r64.ZephyrTests.test_philosophers: SKIPPED (0.00s)
RESULTS - zephyr_v8r64.ZephyrTests.test_synchronization: SKIPPED (0.00s)
SUMMARY:
zephyr-helloworld () - Ran 3 tests in 0.731s
zephyr-helloworld - OK - All required tests passed (successes=1, skipped=2, failures=0, errors=0)

The logs can be viewed at (using zephyr-synchronization as an example):

	Testimage output: build/tmp_baremetal-zephyr/work/armv8r-poky-linux/zephyr-synchronization/3.2.0+gitAUTOINC+4256cd41df-r0/temp/log.do_testimage

	Console output: build/tmp_baremetal-zephyr/work/armv8r-poky-linux/zephyr-synchronization/3.2.0+gitAUTOINC+4256cd41df-r0/testimage/default_log

Baremetal Linux

For the Linux OS, to build the image with the test suite and run it, use the
following command:

TESTIMAGE_AUTO=1 kas build v8r64/meta-armv8r64-extras/kas/baremetal-linux.yml

An example of the test suite output is as follows:

Creating terminal default on terminal_0
default: Waiting for login prompt
RESULTS:
RESULTS - linuxboot.LinuxBootTest.test_linux_boot: PASSED (89.56s)
RESULTS - basictests.BasicTests.test_basic_tests: PASSED (155.99s)
RESULTS - sysinfo.SysInfo.test_hostname: PASSED (3.41s)
RESULTS - sysinfo.SysInfo.test_kernel_version: PASSED (3.34s)
SUMMARY:
core-image-minimal () - Ran 4 tests in 252.298s
core-image-minimal - OK - All required tests passed (successes=4, skipped=0, failures=0, errors=0)

The logs can be viewed at:

	Testimage output: build/tmp_baremetal-linux/work/fvp_baser_aemv8r64-poky-linux/core-image-minimal/1.0-r0/temp/log.do_testimage

	Console output: build/tmp_baremetal-linux/work/fvp_baser_aemv8r64-poky-linux/core-image-minimal/1.0-r0/testimage/default_log

Virtualization

For the Virtualization stack, to build the image with the test suite and run
it, use the following command:

XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN=0 \
TESTIMAGE_AUTO=1 \
 kas build v8r64/meta-armv8r64-extras/kas/virtualization.yml

This runs the same test cases as for the baremetal Linux and Zephyr stacks, as
well as an additional test case against the Xen console output.

Note

When setting TESTIMAGE_AUTO=1 for automatic testing,
XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN must be set to 0, and vice
versa. That is, TESTIMAGE_AUTO and
XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN cannot be set to 1 at the same
time, because demo application autorun and testimage both start the
rpmsg-remote application, which will cause testimage to fail.

An example of the test suite output is as follows:

Creating terminal default on terminal_2
Creating terminal xen on terminal_0
Creating terminal zephyr_v8r64 on terminal_1
default: Waiting for login prompt
ptest-runner started
Skipping - not zephyr-helloworld
Skipping - not zephyr-philosophers
Skipping - not zephyr-synchronization
RESULTS:
RESULTS - linuxboot.LinuxBootTest.test_linux_boot: PASSED (145.80s)
RESULTS - basictests.BasicTests.test_basic_tests: PASSED (181.35s)
RESULTS - linuxlogin.LinuxLoginTest.test_linux_login: PASSED (4.58s)
RESULTS - ptest_docker.PtestDockerTests.test_ptestdocker: PASSED (439.05s)
RESULTS - rpmsg.RpmsgTests.test_rpmsg_demo: PASSED (62.72s)
RESULTS - rpmsg.RpmsgTests.test_zephyr_boot: PASSED (0.00s)
RESULTS - sysinfo.SysInfo.test_hostname: PASSED (5.30s)
RESULTS - sysinfo.SysInfo.test_kernel_version: PASSED (3.28s)
RESULTS - xen.XenBoot.test_boot: PASSED (0.00s)
RESULTS - zephyr_v8r64.ZephyrTests.test_helloworld: SKIPPED (0.00s)
RESULTS - zephyr_v8r64.ZephyrTests.test_philosophers: SKIPPED (0.00s)
RESULTS - zephyr_v8r64.ZephyrTests.test_synchronization: SKIPPED (0.00s)
SUMMARY:
core-image-minimal () - Ran 12 tests in 842.089s
core-image-minimal - OK - All required tests passed (successes=9, skipped=3, failures=0, errors=0)

The logs can be viewed at:

	Testimage output: build/tmp_virtualization/work/fvp_baser_aemv8r64-poky-linux/core-image-minimal/1.0-r0/temp/log.do_testimage

	Xen console output: build/tmp_virtualization/work/fvp_baser_aemv8r64-poky-linux/core-image-minimal/1.0-r0/testimage/xen_log

	Zephyr console output: build/tmp_virtualization/work/fvp_baser_aemv8r64-poky-linux/core-image-minimal/1.0-r0/testimage/zephyr_v8r64_log

	Linux console output: build/tmp_virtualization/work/fvp_baser_aemv8r64-poky-linux/core-image-minimal/1.0-r0/testimage/default_log

Reference

	1

	https://developer.arm.com/downloads/-/arm-ecosystem-fvps/eula

	2

	https://docs.yoctoproject.org/test-manual/intro.html

Extend

This document provides the guides showing how to use extra features, customize
configurations in this Software Stack.

Extra Features

Networking

The FVP is configured by default to use “user mode networking”, which simulates
an IP router and DHCP server to avoid additional host dependencies and
networking configuration. Outbound connections work automatically, e.g. by
running:

wget www.arm.com

Inbound connections require an explicit port mapping from the host. By default,
port 8022 on the host is mapped to port 22 on the FVP, so that the
following command will connect to an ssh server running on the FVP:

ssh root@localhost -p 8022

To map other ports from host, add the parameter containing the port mapping in
the command as below:

kas shell -k \
 v8r64/meta-armv8r64-extras/kas/virtualization.yml \
 -c "../layers/meta-arm/scripts/runfvp \
 --verbose --console -- --parameter \
 'bp.virtio_net.hostbridge.userNetPorts=8022=22,8080=80,5555=5555'"

Note

User mode networking does not support ICMP, so ping will not work.

More details on this topic can be found at User mode networking 1.

File Sharing between Host and FVP

It is possible to share a directory between the host machine and the FVP using
the virtio P9 device component included in the kernel. To do so, create a
directory to be mounted from the host machine:

mkdir /path/to/host-mount-dir

Then, add the following parameter containing the path to the directory when
launching the model:

--parameter 'bp.virtiop9device.root_path=/path/to/host-mount-dir'

e.g. for the virtualization build:

kas shell -k \
 v8r64/meta-armv8r64-extras/kas/virtualization.yml \
 -c "../layers/meta-arm/scripts/runfvp \
 --verbose --console -- --parameter \
 'bp.virtiop9device.root_path=/path/to/host-mount-dir'"

Once you are logged into the FVP, the host directory can be mounted in a
directory on the model using the following command:

mount -t 9p -o trans=virtio,version=9p2000.L FM /path/to/fvp-mount-dir

Customize Configuration

Customizing the Zephyr Configuration

The Zephyr repository contains two relevant board definitions,
fvp_baser_aemv8r and fvp_baser_aemv8r_smp, each of which provides a base
defconfig and device tree for the build. In the Yocto build, the board
definition is selected dynamically based on the number of CPUs required by the
application recipe.

The defconfig can be extended by adding one or more .conf files to
SRC_URI (which are passed to the OVERLAY_CONFIG Zephyr configuration
flag).

Note

The file extension for Zephyr config overlays (.conf) is different to the
extension used by config fragments in other recipes (.cfg), despite the
similar functionality.

The device tree can be modified by adding one or more .overlay files to
SRC_URI (which are passed to the DTC_OVERLAY_FILE Zephyr configuration
flag). These overlays can modify, add or remove nodes in the board’s device
tree.

For an example of these overlay files and how to apply them to the build, see
the modifications to run Zephyr applications on Xen in directory
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/ [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/]

The link Important Build System Variables 2 provides more information.

Note

Zephyr’s device tree overlays have a different syntax from U-Boot’s device
tree overlays.

Customizing the Xen Domains

The default configuration contains two pre-configured domains:
XEN_DOM0LESS_DOM_LINUX and XEN_DOM0LESS_DOM_ZEPHYR, with the BitBake
varflags set appropriately. These varflags define where to find the domain
binaries in the build configuration, where to load them in memory at runtime and
how to boot the domain. Note that no attempts are made to validate overlapping
memory regions, or even whether the defined addresses fit in the FVP RAM. For
information, see the notes in the file
meta-armv8r64-extras/classes/xen_dom0less_config.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/xen_dom0less_config.bbclass].

Currently, the default images that these two pre-configured domains run on are:
one Linux rootfs image (core-image-minimal) for XEN_DOM0LESS_DOM_LINUX
and one Zephyr application (zephyr-rpmsg-demo) for
XEN_DOM0LESS_DOM_ZEPHYR.

The default Linux rootfs image can be configured using the variable
XEN_DOM0LESS_LINUX_IMAGE and the default Zephyr application can be
configured using the variable XEN_DOM0LESS_ZEPHYR_APPLICATION. For example,
to use core-image-base and zephyr-helloworld instead of the defaults,
run:

XEN_DOM0LESS_LINUX_IMAGE="core-image-base" \
XEN_DOM0LESS_ZEPHYR_APPLICATION="zephyr-helloworld" \
 kas build v8r64/meta-armv8r64-extras/kas/virtualization.yml

Customize Parameter

Customizing the FVP Parameters

FVPs can be configured some aspects of their behavior through command-line
parameters. When starting FVP using the runfvp script, the parameters can
be customized by putting them after the separator --. For example, in the
following command, port mapping is customized by the additional FVP parameter
bp.virtio_net.hostbridge.userNetPorts, which will override the default value
of the same parameter defined in
meta-armv8r64-extras/classes/xen_dom0less_image.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/xen_dom0less_image.bbclass].

kas shell -k \
 v8r64/meta-armv8r64-extras/kas/virtualization.yml \
 -c "../layers/meta-arm/scripts/runfvp \
 --verbose --console -- --parameter \
 'bp.virtio_net.hostbridge.userNetPorts=8022=22,8080=80,5555=5555'"

The default parameters for the Software Stack to run FVP are defined in the
following files:

	https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/conf/machine/fvp-baser-aemv8r64.conf?h=langdale

	meta-armv8r64-extras/classes/zephyr-fvpboot.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/zephyr-fvpboot.bbclass]

	meta-armv8r64-extras/classes/xen_dom0less_image.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/xen_dom0less_image.bbclass]

Among them, fvp-baser-aemv8r64.conf [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/conf/machine/fvp-baser-aemv8r64.conf?h=langdale] defines the base FVP parameters of the
Software Stack, and is also the default FVP parameter of the Baremetal Linux
stack. Based on the above default parameters,
meta-armv8r64-extras/classes/zephyr-fvpboot.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/zephyr-fvpboot.bbclass] customizes the FVP
parameters for Baremetal Zephyr stack, and
meta-armv8r64-extras/classes/xen_dom0less_image.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/xen_dom0less_image.bbclass] customizes the
FVP parameters for the Virtualization stack.

You can run the command below to check the description and optional values of
the FVP parameters. For more details about FVP and its supported parameters,
see Fast Models FVP Reference Guide [https://developer.arm.com/docs/100966/latest].

kas shell -k v8r64/meta-armv8r64-extras/kas/virtualization.yml \
 -c "../layers/meta-arm/scripts/runfvp -- --list-params"

Warning

The default parameters are elaborately tuned, and changing parameters you
don’t understand may lead to unpredictable results.

Customizing Build Environment Parameters

The Software Stack can be configured some aspects of its target image and
runtime behavior at build time via command-line environment variables.
The build environment variables and parameters supported by the Software Stack
and their scope of application are detailed below.

	TESTIMAGE_AUTO

Controls if testimage runs automatically after an image build.

Options:

	0 (default)

Enable to run test suite automatically after an image build

	1

Disable to run test suite automatically after an image build

Applicable:

	Baremetal Zephyr

	Baremetal Linux

	Virtualization

See the section Validation for more details.

	XEN_DOM0LESS_ZEPHYR_APPLICATION

Specifies the Zephyr application recipe to be used.

Options:

	zephyr-rpmsg-demo (default)

	zephyr-helloworld

	zephyr-synchronization

	zephyr-philosophers

Applicable:

	Baremetal Zephyr

	Virtualization

There is one exception is that zephyr-rpmsg-demo only works on the
Virtualization stack. See the Zephyr Sample Applications section for
more information.

	XEN_DOM0LESS_DOMAINS

Specifies which domain(s) will be enabled on Xen.

Options:

	"XEN_DOM0LESS_DOM_LINUX XEN_DOM0LESS_DOM_ZEPHYR" (default)

	"XEN_DOM0LESS_DOM_LINUX"

	"XEN_DOM0LESS_DOM_ZEPHYR"

Applicable:

	Virtualization

See the section Customizing the Xen Domains for more details.

	XEN_DOM0LESS_LINUX_IMAGE

Configures the Linux rootfs image.

Options:

	core-image-minimal (default)

Applicable:

	Virtualization

The Images [https://docs.yoctoproject.org/ref-manual/images.html] section of the Yocto Manual explains details about Linux
rootfs images. It also lists more images that may be used as
XEN_DOM0LESS_LINUX_IMAGE but are not officially supported by this
Software Stack.

	XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN

Controls if the demo application runs automatically after Linux boot.

Options:

	0

Disable to run Demo Applications automatically in the Linux domain
after system boot

	1 (default)

Enable to run Demo Applications automatically in the Linux domain
after system boot

Applicable:

	Virtualization

An example to build zephyr-synchronization and run testimage to validate
after image build on Baremetal Zephyr stack, use the below command:

XEN_DOM0LESS_ZEPHYR_APPLICATION="zephyr-synchronization" \
 kas build v8r64/meta-armv8r64-extras/kas/baremetal-zephyr.yml

Another example of combining parameters, to run only Linux domain on Xen using
core-image-base as rootfs, and disable testimage at build time and not
automatically run demo application at run-time:

TESTIMAGE_AUTO=0 \
XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN=0 \
XEN_DOM0LESS_DOMAINS="XEN_DOM0LESS_DOM_LINUX" \
XEN_DOM0LESS_LINUX_IMAGE="core-image-base" \
 kas build v8r64/meta-armv8r64-extras/kas/virtualization.yml

Reference

	1

	https://developer.arm.com/documentation/100964/1118/Introduction-to-Fast-Models/User-mode-networking?lang=en

	2

	https://docs.zephyrproject.org/3.2.0/develop/application/index.html#important-build-system-variables

Borrow

This document is a deeper explanation of how to reuse the components, patches
in this Software Stack.

Reusing the Firmware Patches

The firmware (linux-system.axf) consists of U-Boot and the base device tree,
bundled together with boot-wrapper-aarch64. Both U-Boot and boot-wrapper-aarch64
are patched to support the Armv8-R AArch64 architecture. These patches live in
meta-arm-bsp 1.

For further details on the boot-wrapper-aarch64 patches see the
Boot-wrapper-aarch64 section in Developer Manual. The U-Boot
Additional Patches section provides more details on the U-Boot patches.

The base device tree 2 can be found in the meta-arm-bsp Yocto layer.

Reusing the Xen Patches

The patch series for Armv8-R AArch64 with MPU support, which are located in
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen/files [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen/files],
initialize the PoC (Proof of Concept) of Xen on the Armv8-R AArch64
architecture. These patches are implemented based on Xen 4.17 [https://xenbits.xen.org/gitweb/?p=xen.git;a=tree;h=refs/heads/stable-4.17], and the work
to upstream these patches to the Xen mainline is in progress.

Reference

	1

	https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp?h=langdale

	2

	https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/recipes-kernel/linux/files/fvp-baser-aemv8r64/fvp-baser-aemv8r64.dts?h=langdale

Developer Manual

	Boot Process

	Components

	Yocto Layers

	Armv8-R AArch64 Extras Layer (meta-armv8r64-extras)

	Applications

	Validation

Boot Process

As described in the High Level Architecture section of the Introduction,
the system can boot in 3 different ways. The corresponding boot flow is as
follows:

The booting process of Baremetal Zephyr is quite straightforward: Zephyr boots
directly from the reset vector after system reset.

For Baremetal Linux, the booting process is as the following diagram:

[image: Armv8-R Stack Boot Flow (Baremetal Linux)]
And the booting process of Virtualization solution is as the following diagram:

[image: Armv8-R Stack Boot flow (Virtualization - Xen Hypervisor)]
The Boot Sequence section provides more details.

Components

Boot-wrapper-aarch64

The Armv8-R AArch64 application level programmers’ model differs from the
Armv8-A AArch64 profile in the following ways:

	Armv8-R AArch64 supports only a single Security state, Secure.

	EL2 is mandatory.

	EL3 is not supported.

	Armv8-R AArch64 supports the A64 ISA instruction set with some modifications.

See the section B1.1.1 of Arm Architecture Reference Manual Supplement [https://developer.arm.com/documentation/ddi0600/ad/?lang=en]
for more details.

In this Software Stack, boot-wrapper-aarch64 works as an alternative
Trusted-Firmware [https://www.trustedfirmware.org/] solution, to solve the difference in the startup process due
to the above differences.

The original general boot-wrapper is a fairly simple implementation of a boot
loader intended to run under an ARM Fast Model and boot Linux. In this Software
Stack, boot-wrapper-aarch64 implements the following functions for the Armv8-R
AArch64 architecture:

	S-EL2 booting for Armv8-R AArch64

	Supports to boot Linux or U-Boot from S-EL1

	Supports to boot Xen hypervisor or U-Boot from S-EL2

	Provides PSCI services (CPU_ON / CPU_OFF) for booting SMP Linux on
baremetal

	Provides PSCI services (CPU_ON / CPU_OFF) to support Xen SMP boot by
introducing libfdt [https://github.com/dgibson/dtc/tree/v1.6.1/libfdt] to manipulate Flattened Device Trees dynamically and
reserve /memreserve to prevent from overriding PSCI services

Boot-wrapper-aarch64 is implemented in
https://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git/,
with additional patches [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/recipes-bsp/boot-wrapper-aarch64/files/fvp-baser-aemv8r64?h=langdale] applied in the meta-arm-bsp layer.

Two new compilation options have been added in these patches: --enable-psci
and --enable-keep-el.

Flag --enable-psci can be used to choose PSCI method between Secure Monitor
Call (SMC) and Hypervisor Call (HVC). To use smc, select
--enable-psci or --enable-psci=smc. To use hvc, select
--enable-psci=hvc.

Armv8-R AArch64 does not support smc, thus hvc is selected in this
stack.

Flag --enable-keep-el can be used to enable boot-wrapper-aarch64 to boot
next stage at S-EL2. As the Armv8-R AArch64 architecture boots from S-EL2, if
the next stage requires executing from S-EL2, the boot-wrapper-aarch64 shall not
drop to S-EL1.

Configuration of these two options in this stack can be found here [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/recipes-bsp/boot-wrapper-aarch64/boot-wrapper-aarch64-fvp-baser-aemv8r64.inc?h=langdale#n31].

Bootloader (U-Boot)

The stack’s bootloader is implemented by U-Boot [https://www.denx.de/wiki/U-Boot] (version 2022.07), with
additional patches [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/recipes-bsp/u-boot/u-boot/fvp-baser-aemv8r64?h=langdale] applied in the meta-arm-bsp layer.

Additional Patches

The patches are based on top of U-Boot’s “vexpress64” board family (which
includes the Juno Versatile Express development board and the
FVP_Base_RevC-2xAEMvA model) because the FVP_Base_AEMv8R model has a
similar memory layout. The board is known in U-Boot as BASER_FVP and is
implemented through additions to the vexpress_aemv8.h header file and the
vexpress_aemv8r_defconfig default configuration file.

As well as supporting the BASER_FVP memory map, to allow running Xen at
S-EL2 it is required to run U-Boot at S-EL2 as well, which has the
following implications:

	It is required to initialize the S-EL2 Memory Protection Unit (MPU) to
support unaligned memory accesses.

	Boot-wrapper-aarch64’s PSCI handler uses the exception vector at S-EL2
(VBAR_EL2). By default U-Boot overwrites this for its panic handler.

	We cannot disable hypercalls in HCR_EL2, as HVC instructions are
used for PSCI services.

	A mechanism is required to decide at runtime whether to boot the next stage
at S-EL2 (for Xen) or S-EL1 (for Linux).

Additional patches have therefore been added to:

	Configure Memory Protection Units (MPU). Additionally, add logic to detect
whether a Memory Management Unit (MMU) is present at the current exception
level and if not, trigger the MPU initialization and deinitialization. It is
only possible to determine which memory system architecture is active at
S-EL1 from S-EL2 (system register VTCR_EL2), so at S-EL1 assume the MMU
is configured for backwards compatibility.

	Disable setting the exception vectors (VBAR_EL2). There is already logic
to disable exception vectors for Secondary Program Loader (SPL) builds, so
this has been extended to allow disabling the vectors for non-SPL builds
too.

	Make disabling hypercalls when switching to S-EL1 configurable.

	Extend the ARMV8_SWITCH_TO_EL1 functionality:

	By adding support for switching to S-EL1 for EFI (Extensible Firmware
Interface) booting (it was previously only implemented for booti and
bootm).

	The environment variable armv8_switch_to_el1 has been added to allow
the boot exception level to be configured at runtime, which overrides the
compile-time option.

	Disable setting the COUNTER_FREQUENCY. The value it’s set to might be
different from the value used by the first-stage bootloader.

To support amending the device tree at runtime, there is also a patch to enable
CONFIG_LIBFDT_OVERLAY for the BASER_FVP.

Boot Sequence

U-Boot’s “distro” feature provides a standard bootcmd which automatically
attempts a pre-configured list of boot methods. For the BASER_FVP, these
include:

	Load a boot script from memory.

	Load a boot script stored at /boot.scr on any supported partition
on any attached block device.

	Load a “removable media” EFI payload stored at
/EFI/boot/bootaa64.efi on any supported partition on any attached
block device.

A boot script is a file (compiled using U-Boot’s mkimage command) which
contains commands that are executed by U-Boot’s interpreter.

For baremetal Linux, option 3 above is used. Grub2 (in EFI mode) is installed at
the required path in the boot partition of the disk image, which is attached to
the FVP virtio block interface. Grub2 is configured with a single menu item to
boot the Linux kernel, the image for which is stored in the same partition.

For virtualization, option 2 above is used. A boot script is added to the boot
partition of the disk image, which:

	Loads a device tree overlay file from the same partition and applies it to
the firmware’s device tree.

	Loads the Xen module binaries and passthrough device trees to the required
memory addresses.

	Loads the Xen binary itself.

	Sets the armv8_switch_to_el1 environment variable to n, so that Xen
will boot at S-EL2.

	Boots Xen using the booti boot method.

Option 1 above is not used.

Hypervisor (Xen)

This Software Stack uses Xen [https://xenproject.org/] as the Type-1 hypervisor for hardware
virtualization, which makes it possible to run multiple operating systems (Linux
as the Rich OS and Zephyr as RTOS) in parallel on a single Armv8-R AEM FVP model
(AArch64 mode). Xen in this Software Stack is implemented by version 4.17 [https://xenbits.xen.org/gitweb/?p=xen.git;a=tree;h=refs/heads/stable-4.17] and
the additional patches in directory
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen/files [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen/files]
to support the Armv8-R AArch64 architecture.

In addition to the differences mentioned in the Boot-wrapper-aarch64
section, the Armv8-R AArch64 system level architecture differs from the
Armv8-A AArch64 profiles in the following ways:

	Armv8-R AArch64 provides a Protected Memory System Architecture (PMSA) based
virtualization model.

	The Armv8-R AArch64 implementation supports PMSA at S-EL1 and S-EL2, based
on Memory Protection Unit (MPU).

	Armv8-R AArch64 supports Virtual Memory System Architecture (VMSA), in which
provides a Memory Management Unit (MMU), as an optional memory system
architecture at S-EL1. In other words: optional S-EL1 MMU is supported in
the Armv8-R AArch64 implementation.

These patches are mainly based on the above differences to provide support for
Xen on the Armv8-R AArch64 architecture, enabling the virtualization use case
described in Use Cases Overview in the following ways:

	Enable MPU at S-EL2 to introduce virtualization at S-EL2

	Support MPU at S-EL1 to host a Zephyr RTOS

	Support MMU at S-EL1 to host a Linux Rich OS

And have the following functions to complete the entire virtualization use case:

	The RTOS (Zephyr) domain with S-EL1 MPU and the Rich OS (Linux) domain with
S-EL1 MMU can share the same physical cores, to make these two types of OSes
can run in parallel (New feature for Xen supported by Armv8-R AArch64 only)

	Xen with S-EL2 MPU isolates the RTOS workload and the Rich OS workload

	Xen shares device tree nodes with boot-wrapper-aarch64 to implement SMP
(Symmetric Multi-Processing)

	Xen co-exists with boot-wrapper-aarch64 providing PSCI services at S-EL2

	Xen runs in secure state only, thus OSes in Xen domains run in secure state
too

Note

The Armv8-R AEM FVP model supports 32 MPU regions by default, which is the
typical setting configured by the parameters of
cluster0.num_protection_regions_s1 and
cluster0.num_protection_regions_s2. Any other settings about the number
of MPU regions may cause unexpected malfunctionality or low performance.

In this implementation, Xen utilizes the “dom0less” feature to create 2 DomUs at
boot time. Information about the DomUs to be created by Xen is passed to the
hypervisor via device tree. The resources for DomUs, including memory, number of
vCPUs, supported devices, etc., are all fully static allocated at compile time.

The resources for DomUs also include static shared memory and static event
channel. The static shared memory device tree nodes allow users to statically
set up shared memory on a dom0less system, enabling domains to do shm-based
communication. The static event channel communication can be established
statically between two domains (not only between two domUs, also between dom0
and domU). Static event channel connection information between domains will be
passed to Xen via the device tree node. The static event channel will be created
and established in Xen before the domain started. Domain only needs hypercall
EVTCHNOP_send to send notifications to the remote guest.

The documentation at this link [https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=docs/misc/arm/device-tree/booting.txt] provides more details about the device tree.

The static shared memory and static event channel are supported by Xen 4.17 [https://xenbits.xen.org/gitweb/?p=xen.git;a=tree;h=refs/heads/stable-4.17],
as listed in the Xen Project 4.17 Feature List [https://wiki.xenproject.org/wiki/Xen_Project_4.17_Feature_List].

Linux Kernel

The Linux kernel in this stack is version 5.19 [https://git.yoctoproject.org/linux-yocto/tree/?h=v5.19/standard/base] at
https://git.yoctoproject.org/linux-yocto/.

The kernel configuration for Armv8-R AArch64 in this stack is defined in the
cfg and scc files [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/recipes-kernel/linux/arm-platforms-kmeta/bsp/arm-platforms?h=langdale] in the meta-arm-bsp layer in the meta-arm [https://git.yoctoproject.org/meta-arm/tree/?h=langdale] repository.
The device tree [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/recipes-kernel/linux/files/fvp-baser-aemv8r64/fvp-baser-aemv8r64.dts?h=langdale] can also be found in the meta-arm-bsp layer.

Devices supported in the kernel:

	serial

	virtio 9p

	virtio disk

	virtio network

	virtio rng

	watchdog

	rtc

In addition to the above configurations, Linux running in the Xen domain as a
guest OS also enables the following additional configurations to support static
shared memory, static event channel, docker, etc.:

	File
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen/files/fvp-baser-aemv8r64.cfg [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen/files/fvp-baser-aemv8r64.cfg]
introduces Xen support for fvp-baser-aemv8r64

	File xen.cfg [https://git.yoctoproject.org/meta-virtualization/tree/recipes-kernel/linux/linux-yocto/xen.cfg?h=langdale] contains kernel features needed to run as a Xen guest OS

	File docker.cfg [https://git.yoctoproject.org/meta-virtualization/tree/recipes-kernel/linux/linux-yocto/docker.cfg?h=langdale] contains kernel features needed by docker

	File
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/linux/files/fvp-baser-aemv8r64/kmeta-extra/features/xen-shmem.cfg [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/linux/files/fvp-baser-aemv8r64/kmeta-extra/features/xen-shmem.cfg]
contains kernel features to support Xen static shared memory

	Kernel features that support Xen static event channels are enabled by
default, so no additional configuration is required

Additional Patches

The static shared memory and static event channel drivers are enabled in Linux
by additional patches in directory
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/linux/files/fvp-baser-aemv8r64/kmeta-extra/features [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/linux/files/fvp-baser-aemv8r64/kmeta-extra/features].
These patches provide the following features:

	Enable xen,dom0less to the Linux domain.

	Add a new IOCTL type IOCTL_EVTCHN_BIND to bind statically allocated
static event channel port.

	Add a new xen,shared-info property for information sharing between Xen
and domains in xen,dom0less system.

	Add static shared memory driver.

Zephyr

The Zephyr OS [https://www.zephyrproject.org/] is an open source real-time
operating system based on a small-footprint kernel designed for user on
resource-constrained and embedded systems.

The stack supports to run Zephyr (version 3.2.0 [https://github.com/zephyrproject-rtos/zephyr/tree/v3.2.0]) either on baremetal, or as a
Xen domain in the virtualization solution.

Zephyr is implemented in https://github.com/zephyrproject-rtos/zephyr, and
supports the Armv8-R AArch64 architecture using Arm FVP BaseR AEMv8-R [https://docs.zephyrproject.org/3.2.0/boards/arm64/fvp_baser_aemv8r/doc/index.html] board
listed in Zephyr supported boards.

Zephyr provides many demos and sample programs. This Software Stack supports the
following 3 classic samples:

	Hello World [https://docs.zephyrproject.org/3.2.0/samples/hello_world/README.html]

	Synchronization Sample [https://docs.zephyrproject.org/3.2.0/samples/synchronization/README.html]

	Dining Philosophers [https://docs.zephyrproject.org/3.2.0/samples/philosophers/README.html]

A demo application is also provided in this Software Stack to showcase the
communication between the Zephyr domain and the Linux domain using OpenAMP
RPMsg, based on the static shared memory and static event channel provided by
the Xen hypervisor.

Additional Patches

The static shared memory and static event channel drivers are enabled in Zephyr by
additional patches in directory
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/files [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/files].
These patches provide the following features:

	Add hypervisor node in device tree to run Zephyr on Xen.

	Add MPU static shared memory region.

	Add Kconfig item XEN and XEN_DOMAIN_SHARED_MEM to enable Xen driver
and Xen domain static shared memory in Zephyr.

	Save event comes before channel is bound, so that the event won’t be lost if
the domain which receives events has not bound.

Yocto Layers

The Armv8-R AArch64 Software Stack is provided through the GitLab repository:
https://gitlab.arm.com/automotive-and-industrial/v8r64. The v8r64 repository provides a Yocto Project compatible
layer – meta-armv8r64-extras – with target platform fvp-baser-aemv8r64 [https://git.yoctoproject.org/meta-arm/tree/meta-arm-bsp/documentation/fvp-baser-aemv8r64.md]
extensions for Armv8-R AArch64. Currently this layer extends the
fvp-baser-aemv8r64 machine definition from the meta-arm-bsp layer in the
meta-arm [https://git.yoctoproject.org/meta-arm/tree/?h=langdale] repository.

The following diagram illustrates the layers which are integrated in the
Software Stack, which are further expanded below.

[image: Arm v8r64 Yocto layers]

	poky layers (meta, meta-poky)

	URL: https://git.yoctoproject.org/poky/?h=langdale

	Provides the base configuration, including the ‘poky’ distro.

	meta-arm layers (meta-arm-bsp, meta-arm, meta-arm-toolchain)

	URL: https://git.yoctoproject.org/meta-arm/?h=langdale

	meta-arm-bsp contains the board support to boot baremetal Linux for the
fvp-baser-aemv8r64 machine. It includes

	The base device tree

	Machine-specific boot-wrapper-aarch64 patches

	Machine-specific U-Boot patches

	meta-arm contains:

	A recipe for the FVP_Base_AEMv8R model itself

	The base recipe for boot-wrapper-aarch64

	meta-arm-toolchain is not used, but is a dependency of meta-arm.

	meta-virtualization

	URL: https://git.yoctoproject.org/meta-virtualization/?h=langdale

	Included for the Virtualization stack only.

	meta-openembedded layers (meta-oe, meta-python, meta-filesystems,
meta-networking)

	URL: http://git.openembedded.org/meta-openembedded?h=langdale

	These are dependencies of meta-virtualization and meta-zephyr. meta-oe
and meta-python are included for all configurations.
meta-filesystems and meta-networking are included for the
Virtualization stack only.

	meta-zephyr layer (meta-zephyr-core)

	URL: https://git.yoctoproject.org/meta-zephyr/?h=langdale

	Provides Zephyr SDK bundle, which is used to build Zephyr applications.

	Provides recipes for zephyr-helloworld, zephyr-synchronization and
zephyr-philosophers.

	meta-openamp

	URL: https://github.com/OpenAMP/meta-openamp

	Included for the Virtualization stack only.

	Provides support for building libmetal and libopen_amp libraries.

Armv8-R AArch64 Extras Layer (meta-armv8r64-extras)

Zephyr Sample Applications

This Software Stack supports four Zephyr sample applications:

	zephyr-helloworld

	zephyr-synchronization

	zephyr-philosophers

	zephyr-rpmsg-demo (Zephyr part of RPMsg Demo)

Recipes for zephyr-helloworld, zephyr-synchronization and
zephyr-philosophers are provided by meta-zephyr. Source code for these
three sample applications are provided by Zephyr, with extra configuration
provided for zephyr-philosophers by file
meta-armv8r64-extras/dynamic-layers/zephyrcore/recipes-kernel/zephyr-kernel/zephyr-philosophers.bbappend [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/zephyrcore/recipes-kernel/zephyr-kernel/zephyr-philosophers.bbappend].
These three applications can work in both the baremetal stack and the
Virtualization stack.

The zephyr-rpmsg-demo application works in the Virtualization stack only. It
comes from the recipe
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/zephyr-rpmsg-demo.bb [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/zephyr-rpmsg-demo.bb].
This application works as a RPMsg host (rpmsg-host) in the Zephyr domain,
and co-works with the RPMsg remote application (rpmsg-remote) running in the
Linux domain to implement the Inter-VM communication through the RPMsg
protocol. Recipe for the rpmsg-remote application is provided by
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/rpmsg-demo/rpmsg-demo.bb [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/rpmsg-demo/rpmsg-demo.bb],
which along with zephyr-rpmsg-demo.bb is provided by this Software Stack.
The source code is also provided by this Software Stack and can be found in
directory components/apps/rpmsg-demo [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/components/apps/rpmsg-demo]. For more details, see
RPMsg Demo under Demo Applications.

Running Zephyr applications is supported by the runfvp script from
meta-arm. Section Build and Run has examples that uses this script.

Virtualization Stack

The Virtualization stack uses Xen as the Type-1 hypervisor to boot one or more
domains independently. The meta-virtualization layer is used to provide Xen
build support.

The Xen MPU implementation only supports “dom0less” mode (for more details see
the Hypervisor (Xen) section), so the meta-armv8r64-extras layer provides
logic to build the required dom0less artifacts, which are shown in the diagram
below. For more information on how U-Boot detects and uses these artifacts at
runtime, see the U-Boot Boot Sequence.

[image: Arm v8r64 Xen stack]

Domain Configuration

The default domain configuration is provided in a bbclass. For more information,
see Customizing the Xen Domains.

Xen Configuration

Xen is configured through the .bb and .bbappend files in directory
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-extended/xen],
which define the branch and revision to build for the fvp-baser-aemv8r64
machine and also includes a machine-specific config file.

Linux Image Configuration

In projects based on OE-core, the Linux image recipe is responsible for creating
the disk image, including the root filesystem partition. The boot partition,
which is part of the same disk image, is populated by extending
IMAGE_CLASSES (see Image Generation below).

No changes are made to the Linux kernel for the Virtualization use case.

Zephyr Application Configuration

Zephyr requires some specific configuration when running as a Xen domain on the
fvp-baser-aemv8r64 machine. It is necessary to match the number of CPUs
allocated, the DRAM address and the selected UART with the equivalent parameters
in the domain configuration. This is achieved using Xen-specific overlay files
(see Customizing the Zephyr Configuration).

Device Tree Generation

Xen domains in dom0less mode are configured using additions to the /chosen
node in the device tree. To avoid modifying the firmware’s device tree for the
Virtualization stack we instead dynamically generate a device tree overlay file
which can be applied at runtime by U-Boot. Additionally, in order for Xen to
access peripherals in dom0less mode, we must specify which peripherals to “pass
through” to each domain using a domain-specific passthrough dtb file (see
https://xenbits.xen.org/docs/unstable/misc/arm/passthrough.txt for more
details).

All these device trees are created from templates, substituting placeholders
with values defined in the domain configuration. The passthrough device tree
template to use for each domain is selected in the domain configuration.

U-Boot Script Generation

The boot script is partially dynamically generated in order to load the
configured domain binaries and passthrough device trees to the configured memory
addresses prior to booting Xen.

Image Generation

The boot partition needs to be populated with the artifacts necessary to boot
Xen and its domains so they can be loaded by U-Boot. This is achieved using a
custom Wic image and a custom bbclass (xen_image_dom0less). This class can
be added to IMAGE_CLASSES so that the desired Linux image recipe
(e.g. core-image-minimal) includes the necessary configuration to populate
the boot partition.

Applications

The following diagram shows the architecture of the applications implemented
in this Software Stack:

[image: Arm v8r64 Demo Application Architecture]

Inter-VM Communication

As described in the above architecture diagram, Inter-VM communication
implemented in this Software Stack is based on a shared memory mechanism to
transfer data between VMs. It is implemented using the OpenAMP framework in the
application layer. The Xen hypervisor provides a communication path using
static shared memory and static event channel for data transfer. And the guest
OSes (Linux and Zephyr) in the middle expose the static shared memory and the
static event channel to upper layer applications.

For the implementation of the static shared memory and the static event channel
in Xen and 2 guest OSes, please refer to the section Hypervisor (Xen),
Linux Kernel and Zephyr in Components.

RPMsg (Remote Processor Messaging) is a messaging protocol enabling
communication between two VMs, which can be used by Linux as well as real-time
OSes. RPMsg implementation in the OpenAMP [https://github.com/OpenAMP/open-amp] library is based on virtio.

This Software Stack introduces the meta-openamp [https://github.com/OpenAMP/meta-openamp] layer to provide support for
the OpenAMP library.

Docker Container

The support for docker container in this Software Stack is provided by
docker-ce recipe [https://git.yoctoproject.org/meta-virtualization/tree/recipes-containers/docker/docker-ce_git.bb?h=langdale] in the meta-virtualization [https://git.yoctoproject.org/meta-virtualization] layer.

Running docker also requires kernel-module-xt-nat, which is enabled by
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-containers/docker/docker-ce_git.bbappend [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-containers/docker/docker-ce_git.bbappend].

Demo Applications

There are two demo applications in this Software Stack to demonstrate these two
use scenarios described in the High Level Architecture section in
Introduction.

	RPMsg Demo (components/apps/rpmsg-demo [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/components/apps/rpmsg-demo])

	Docker Container Hosted Nginx (meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/nginx-docker-demo [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/nginx-docker-demo])

These two applications can work together to complete the following process:

	The program running in Zephyr periodically collects the data of the system
running status

	Zephyr sends sampled data to Linux via RPMsg

	After receiving the data, Linux stores the data in a local file

	The Nginx web server running in a docker container serves this file for
external users visiting through the HTTP protocol

	Repeat the above steps so that users can get continuously updated system
running status

RPMsg Demo

The RPMsg Demo application consists of two parts:

	rpmsg-host runs in the Zephyr domain to sample the data of the system
running status and sends the data to rpmsg-remote

	rpmsg-remote runs in the Linux domain to receive the data and stores it
in a local file /usr/share/nginx/html/zephyr-status.html

These two parts communicate with each other using the OpenAMP framework in the
application layer, and the static shared memory and static event channel
provided by Xen in the lower layer.

The recipes for this demo application are provided by
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/zephyr-rpmsg-demo.bb [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-kernel/zephyr-kernel/zephyr-rpmsg-demo.bb]
and
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/rpmsg-demo/rpmsg-demo.bb [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/rpmsg-demo/rpmsg-demo.bb].
The source code can be found in directory components/apps/rpmsg-demo [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/components/apps/rpmsg-demo].

Docker Container Hosted Nginx

In the Docker Container Hosted Nginx demo application, the Nginx server
serves the file /usr/share/nginx/html/zephyr-status.html, and external
users can visit the data in a web browser.

This demo application start automatically by default. To start it manually, run
script /usr/share/nginx/utils/run-nginx-docker.sh in the Linux domain.
See the section Virtualization in Reproduce of User Guide
for example usage.

The recipe for this demo application is provided by
meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/nginx-docker-demo/nginx-docker-demo.bb [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/dynamic-layers/virtualization-layer/recipes-demo/nginx-docker-demo/nginx-docker-demo.bb].

Run Demo Applications

In the default configuration, the above two demo applications run automatically
after the system starts. See the section Virtualization in
Reproduce of User Guide for example usage.

To prevent them from running automatically in the Linux domain, set
XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN to 0 when build, For example:

Build
XEN_DOM0LESS_DOM_LINUX_DEMO_AUTORUN=0 \
 kas build v8r64/meta-armv8r64-extras/kas/virtualization.yml

And run the demo applications manually using the following commands in the Linux
domain:

Start Nginx web server
/usr/share/nginx/utils/run-nginx-docker.sh

Start rpmsg-demo
rpmsg-remote

Limitations and Improvements

The shared memory and event channel mechanisms that Inter-VM communication
relies on are still evolving in Xen, Linux, and Zephyr, which leads to the
limitation of the RPMsg Demo application.

The RPMsg Demo application is mainly to demonstrate the communication
between VM guests within the Xen hypervisor. This program does not have a
sophisticated fault tolerance and exception recovery mechanism. If an exception
occurs, in the extreme case it may be necessary to restart FVP for the next
demonstration, especially in the case of running it manually.

In the current implementation, at least the following improvements can be made
at the application level:

	In rpmsg-host, when send_message fails, the current operation is to
exit the loop directly. The improvement here can be to add a retry mechanism.
If it continues to fail, it can further fall back to trying to restart
rpmsg_init_vdev to setup a new RPMsg channel. The detailed code is in
components/apps/rpmsg-demo/demos/zephyr/rpmsg-host/src/main.c [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/components/apps/rpmsg-demo/demos/zephyr/rpmsg-host/src/main.c].

	Implement rpmsg-host based on Zephyr IPC subsystem RPMsg Service [https://github.com/zephyrproject-rtos/zephyr/tree/v3.2.0/subsys/ipc/rpmsg_service],
which can support multiple endpoints so that it can support multiple RPMsg
channels. The reference code can be found here [https://github.com/zephyrproject-rtos/zephyr/tree/v3.2.0/samples/subsys/ipc/rpmsg_service].

Validation

Run-Time Integration Tests

The run-time integration tests are a mechanism for validating the Software
Stack’s core functionalities.

The tests are run using the OEQA [https://wiki.yoctoproject.org/wiki/QA] test framework. Please refer to
OEQA on Arm FVPs [https://git.yoctoproject.org/meta-arm/tree/documentation/oeqa-fvp.md?h=langdale] for more information on the this framework. Some tests are
also built as a Yocto Ptest [https://wiki.yoctoproject.org/wiki/Ptest] (Package Test) and implemented using the
Bash Automated Testing System [https://github.com/bats-core/bats-core] (BATS).

The integration tests run on an image and depend on its target sub-stack
(Baremetal Zephyr, Baremetal Linux or Virtualization). The tests may
also change their behaviour depending on the the build parameters for target
image.

To run the tests via kas, please refer to the section Validate in
User Guide.

Test Suite

The 3 supported sub-stacks of the Software Stack that are tested by the
framework are detailed below. The testing scripts can be found in
meta-armv8r64-extras/lib/oeqa/runtime/cases [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/lib/oeqa/runtime/cases].

Detailed below is a brief description of what each test does:

	zephyr_v8r64

Zephyr test case which is capable of validating the output of
zephyr-helloworld, zephyr-philosophers and
zephyr-synchronization.

	linuxboot

This case is implemented in
meta-arm/lib/oeqa/runtime/cases/linuxboot.py. It waits for a Linux
login prompt on the default console.

	sysinfo

Test case to check system information (e.g. kernel version, hostname) is the
same between Yocto build system and Yocto image.

	basictests

Run basic-tests implemented using BATS. See Basic Tests for more
details.

	xen

Test case which is capable of validating the boot of Xen.

	ptest_docker

Test case to check docker engine installation, daemon and runtime.

	rpmsg

Test case to validate the Inter-VM communication using RPMsg between the
Zephyr domain and the Linux domain on Xen.

The following table is a map of the test sets contained in the 3 sub-stacks:

	Test Case

	Baremetal Zephyr

	Baremetal Linux

	Virtualization

	zephyr_v8r64

	x

	
	x

	linuxboot

	
	x

	x

	sysinfo

	
	x

	x

	basictests

	
	x

	x

	linuxlogin

	
	
	x

	xen

	
	
	x

	ptest_docker

	
	
	x

	rpmsg

	
	
	x

For the Virtualization stack, more specifically, whether the test case is
applicable or not depends on the parameters to the build the target image, and
the corresponding relationship is as follows:

	Test Case

	Two DomUs (default)

	Two DomUs

	Single DomU (Zephyr)

	Single DomU (Linux)

	XEN_DOM0LESS_DOMAINS:

	ZEPHYR + LINUX

	XEN_DOM0LESS_DOMAINS:

	ZEPHYR + LINUX

	XEN_DOM0LESS_DOMAINS:

	ZEPHYR

	XEN_DOM0LESS_DOMAINS:

	LINUX

	ZEPHYR_APPLICATION:

	zephyr-rpmsg-demo

	ZEPHYR_APPLICATION:

	zephyr-helloworld

	zephyr-synchronization

	zephyr-philosophers

	ZEPHYR_APPLICATION:

	zephyr-helloworld

	zephyr-synchronization

	zephyr-philosophers

	

	zephyr_v8r64

	x

	x

	x

	

	linuxboot

	x

	x

	
	x

	sysinfo

	x

	x

	
	x

	basictests

	x

	x

	
	x

	linuxlogin

	x

	x

	
	x

	xen

	x

	x

	x

	x

	ptest_docker

	x

	x

	
	x

	rpmsg

	x

	
	
	

For the build parameters XEN_DOM0LESS_DOMAINS and
XEN_DOM0LESS_ZEPHYR_APPLICATION, please refer to the section
Customizing Build Environment Parameters in User Guide.

Basic Tests

The Basic Tests perform the basic checks on the devices and functionalities
supported in the system. These tests are available for both the
Baremetal Linux and Virtualization images and consist of a series of
BATS tests that can be found in
meta-armv8r64-extras/recipes-refstack-tests/basic-tests/files/testcases [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/recipes-refstack-tests/basic-tests/files/testcases].

Detailed below is information on which test is applicable to which stack and a
brief description of what each test does:

	Baremetal Linux:

	rtc

The BATS script implementing the test is test-rtc.bats.
Checks that the rtc (real-time clock) device and its correct driver are
available and accessible via the filesystem and verifies that the
hwclock command runs successfully.

	watchdog

The BATS script implementing the test is test-watchdog.bats.
Checks that the watchdog device and its correct driver are available and
accessible via the filesystem.

	networking

The BATS script implementing the test is test-net.bats.
Checks that the network device and its correct driver are available and
accessible via the filesystem and that outbound connections work
(invoking wget).

	smp

The BATS script implementing the test is test-smp.bats.
Checks for CPU availability and that basic functionality works, like
enabling and stopping CPUs and preventing all of them from being
disabled at the same time.

	virtiorng

The BATS script implementing the test is test-virtiorng.bats.
Check that the virtio-rng device is available through the filesystem and
that it is able to generate random numbers when required.

	Virtualization:

	Linux Domain

	Same tests as Baremetal Linux

	shmem

The BATS script implementing the test is test-shmem.bats.
Check that the xen_mem device is available.

	evtchn

The BATS script implementing the test is test-evtchn.bats.
Check that the xen/evtchn device is available.

The Basic Tests are built and installed in the image according to the following
BitBake recipe:
meta-armv8r64-extras/recipes-refstack-tests/basic-tests/basic-tests.bb [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/recipes-refstack-tests/basic-tests/basic-tests.bb].

Integration Tests Implementation

This section gives a high-level description of how the integration testing logic
is implemented.

To enable the integration tests, the testimage.bbclass [https://docs.yoctoproject.org/langdale/ref-manual/classes.html#testimage-bbclass] is used. This class
supports running automated tests against images. The class handles loading the
tests and starting the image.

The Writing New Tests [https://docs.yoctoproject.org/langdale/dev-manual/common-tasks.html#writing-new-tests] section of the Yocto Manual explains how to write new
tests when using the testimage.bbclass. These are placed under
meta-armv8r64-extras/lib/oeqa/runtime/cases [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/lib/oeqa/runtime/cases] and will be selected
by the different machines/configurations by modifying the TEST_SUITES
variable. For example, the file
meta-armv8r64-extras/classes/refstack-virtualization-tests.bbclass [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/classes/refstack-virtualization-tests.bbclass]
adds different combinations of test cases to the TEST_SUITES variable
according to the build parameters of the virtualizaiton stack.

For the Basic Tests, the basic-tests.bb that inherits the Ptest
framework/class and installs the BATS test files located under
meta-armv8r64-extras/recipes-refstack-tests/basic-tests [https://gitlab.arm.com/automotive-and-industrial/v8r64/-/blob/langdale/meta-armv8r64-extras/recipes-refstack-tests/basic-tests]. Each image recipe
(Baremetal Linux or Virtualization) includes basic-tests.bb.

Codeline Management

Overview

The Armv8-R AArch64 Software Stack releases use the following model:

	The Software Stack releases grow incrementally (meaning that we are not
dropping previously released features, with exceptions)

Note

A specific exception is that support for PREEMPT_RT Linux builds was
removed in Release 4.0 - Xen.

	The Armv8-R AEM FVP model [https://developer.arm.com/downloads/-/arm-ecosystem-models] releases are incremental (meaning that FVPs are
not dropping previously released features)

In addition to the above model, the Armv8-R AArch64 Software Stack is developed
and released based on Yocto’s release branch process. This strategy allows us
make releases based on upstream stable branches, reducing the risk of having
build and runtime issues.

Yocto Release Process

[image: Yocto Release Process]
The diagram above gives an overview of the Yocto branch and release process:

	 Development happens primarily in the master
(or main) branch.

	The project has a major release roughly every 6 months where a stable branch
is created.

	Each major release has a codename which is also used to name the stable
branch is created.

	Once a stable branch is created and released, it only receives bug fixes
with minor (point) releases on an unscheduled basis.

	The goal is for users and 3rd parties layers to use these codename
branches as a means to be compatible with each other.

For a complete description of the Yocto release process, support schedule and
other details, see the Yocto Release Process [https://docs.yoctoproject.org/ref-manual/release-process.html] documentation.

Armv8-R AArch64 Software Stack Branch and Release Process

The Armv8-R AArch64 Software Stack’s branch and release process can be described
as the following diagram:

[image: Armv8-R AArch64 Software Stack Release Process]
The stack’s branch and release process will follow the Yocto release process.
Below is a detailed description of the branch strategy for this stack’s
development and release process.

	Main branch

	Represented by the green line on the diagram above.

	The repository’s main branch is meant to be compatible with
 master or main branches from Poky and
3rd party layers.

	This stack is not actively developed on this main branch to avoid the
instability inherited from Yocto development on the
 master branch.

	To reduce the effort to move this stack to a new version of Yocto, this
main branch is periodically updated with the patches from the
development and release branch on a regular basis.

	Development and release branches

	Represented by the blue line on the diagram above.

	This stack uses development branches based on or compatible with Yocto
stable branches.

	A development branch in this stack is setup for each new Yocto release
using the name convention codename where codename comes from target
Yocto release.

	The development branches are where fixes, improvements and new features
are developed.

	On a regular basis, code from the development branch is ported to the
main branch to reduce the effort required to move this stack to a new
version of Yocto.

	The development branches are also used for release by creating tags on the
specific commits.

License

The software is provided under the MIT license (below).

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice (including the next
paragraph) shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

SPDX Identifiers

Individual files contain the following tag instead of the full license text.

SPDX-License-Identifier: MIT

This enables machine processing of license information based on the SPDX
License Identifiers that are here available: http://spdx.org/licenses/

Changelog & Release Notes

Release 5.0 - InterVM Communication with Linux Containers

New Features

	Provided static shared memory in Xen hypervisor allowing users to statically
set up shared memory on a dom0less system, enabling domains to do shm-based
communication

	Provided static event channel established in Xen hypervisor for event
notification between two domains

	Implemented Inter-VM communication using RPMsg protocol provided by the
OpenAMP framework together with the static shared memory and static event
channel provided by Xen hypervisor

	Added docker support in the Linux domain, showing standard application
deployments via containers

	Added a docker container hosted Nginx web server to serve data for external
users visiting through the HTTP protocol

	Added Yocto testimage support

	Added test suite that can validate the functionalities in Baremetal Zephyr

	Enhanced the test suite to validate Baremetal Linux and Virtualization stack

Changed

	Upgraded to FVP version 11.20.15

	Upgraded Yocto to langdale

	Upgraded to U-Boot 2022.07

	Upgraded to Xen 4.17

	Upgraded to Zephyr 3.2.0

	Upgraded to Linux kernel 5.19

	Enabled CONFIG_XEN options for Linux domain to add Xen kernel support

	Changed to use the meta-zephyr Yocto layer to build Zephyr applications

URL: https://git.yoctoproject.org/meta-zephyr
layers: meta-zephyr-core
branch: langdale
revision: 375aea434ef214a5022e0a3e54fcae3e5e965c9b

	Introduced the meta-openamp Yocto layer to build libmetal and OpenAMP
libraries

URL: https://github.com/OpenAMP/meta-openamp
layers: meta-openamp
|inclusivity-exception| branch: master
revision: cd5cc9274321ea9d808a7800cfcba26320cf53a5

	Other third-party Yocto layers used to build the Software Stack:

URL: https://git.yoctoproject.org/git/poky
layers: meta, meta-poky
branch: langdale
revision: a3e3b740e140d036122f7b11e2ac452bda548444

URL: https://git.openembedded.org/meta-openembedded
layers: meta-filesystems, meta-networking, meta-oe, meta-python
branch: langdale
revision: c354f92778c1d4bcd3680af7e0fb0d1414de2344

URL: https://git.yoctoproject.org/git/meta-virtualization
layers: meta-virtualization
branch: langdale
revision: 8857b36ebfec3d548755755b009adc491ef320ab

URL: https://git.yoctoproject.org/git/meta-arm
layers: meta-arm, meta-arm-bsp, meta-arm-toolchain
branch: langdale
revision: 025124814e8676e46d42ec5b07220283f1bdbcd0

Known Issues and Limitations

	Xen shared-memory does not support xen,offset yet, which is
introduced in the Linux documentation at
Xen hypervisor reserved-memory binding [https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/xen%2Cshared-memory.txt]

	The below feature for Xen static shared memory device node “xen,shared-mem”
is not implemented yet:

Host physical address is optional, when missing Xen decides the location

	The limitations of RPMsg Demo mentioned in
Limitations and Improvements

	The bp.refcounter.use_real_time model parameter is not supported for the
hypervisor and baremetal Zephyr use cases

	Issues and limitations mentioned in Known Issues and Limitations of Release 2

Release 4.0 - Xen

New Features

	Added ability to boot one Linux and one Zephyr domain on Xen in dom0less
mode

	Added ability to boot three Zephyr sample applications

	Added basic Linux test suite using BATS

Changed

	A new Yocto layer has been created called meta-armv8r64-extras, which
extends meta-arm-bsp with additional use cases

	Moved documentation to the new repository and expanded to cover new use
cases. It is now published on ReadTheDocs

	Upgraded to FVP version 11.18.16

	Upgraded to U-Boot 2022.01 and enabled support for applying device tree
overlays

	Upgraded to Linux kernel 5.15

	Added support to boot-wrapper-aarch64 for S-EL2 SMP payloads such as Xen

	Amended the device tree to support the virtio random number generator

	Added ssh-pregen-hostkeys to the default image to improve boot times

	Amended the default model parameters to support enabling
cache_state_modelled

	Removed support for PREEMPT_RT Linux kernel builds

	Third-party Yocto layers used to build the Software Stack:

URL: https://git.yoctoproject.org/git/poky
layers: meta, meta-poky
branch: kirkstone
revision: 0c3b92901cedab926f313a2b783ff2e8833c95cf

URL: https://git.openembedded.org/meta-openembedded
layers: meta-filesystems, meta-networking, meta-oe, meta-python
branch: kirkstone
revision: fcc7d7eae82be4c180f2e8fa3db90a8ab3be07b7

URL: https://git.yoctoproject.org/git/meta-virtualization
layers: meta-virtualization
branch: kirkstone
revision: 0d35c194351a9672d18bff52a8f2fbabcd5b0f3d

URL: https://git.yoctoproject.org/git/meta-arm
layers: meta-arm, meta-arm-bsp, meta-arm-toolchain
branch: kirkstone
revision: 32ca791aaa6634e90a7c6ea3994189ef10a7ac90

Known Issues and Limitations

	The bp.refcounter.use_real_time model parameter is not supported for the
hypervisor and baremetal Zephyr use cases

	“Dom0less” is a new set of features for Xen, some of which are still being
developed in the Xen community. In this case, a “dom0less” domain running
Linux cannot enable the CONFIG_XEN option, which will cause some
limitations. For example, Linux can’t detect that it is running inside a Xen
domain, so some Xen domain platform-specific Power Management control paths
will not be invoked. One of the specific cases is that using the command
echo 0 > /sys/devices/system/cpu/cpu0/online to power off the Linux
domain’s vcpu0 is invalid.

	Issues and limitations mentioned in Known Issues and Limitations of Release 2

Release 3 - UEFI

Release Note

https://community.arm.com/oss-platforms/w/docs/638/release-3—uefi [https://community.arm.com/oss-platforms/w/docs/638/release-3---uefi]

New Features

	Added U-Boot v2021.07 for UEFI support

	Updated boot-wrapper-aarch64 revision and added support for booting U-Boot

	Included boot-wrapper-aarch64 PSCI services in /memreserve/ region

Changed

	Configured the FVP to use the default RAM size of 4 Gb

	Added virtio_net User Networking mode by default and removed instructions
about tap networking setup

	Updated Linux kernel version from 5.10 to 5.14 for both standard and
Real-Time (PREEMPT_RT) builds

	Fixed the counter frequency initialization in boot-wrapper-aarch64

	Fixed PL011 and SP805 register sizes in the device tree

Known Issues and Limitations

	Device DMA memory cache-coherence issue: the FVP cache_state_modelled
parameter will affect the cache coherence behavior of peripherals’ DMA. When
users set cache_state_modelled=1, they also have to set
cci400.force_on_from_start=1 to force the FVP to enable snooping on
upstream ports

	Issues and limitations mentioned in Known Issues and Limitations of Release 2

Release 2 - SMP

Release Note

https://community.arm.com/oss-platforms/w/docs/634/release-2—smp [https://community.arm.com/oss-platforms/w/docs/634/release-2---smp]

New Features

	Enabled SMP support via boot-wrapper-aarch64 providing the PSCI CPU_ON
and CPU_OFF functions

	Introduced Armv8-R64 compiler flags

	Added Linux PREEMPT_RT support via linux-yocto-rt-5.10

	Added support for file sharing with the host machine using Virtio P9

	Added support for runfvp

	Added performance event support (PMU) in the Linux device tree

Changed

None.

Known Issues and Limitations

	Only PSCI CPU_ON and CPU_OFF functions are supported

	Linux kernel does not support booting from secure EL2 on Armv8-R AArch64

	Linux KVM does not support Armv8-R AArch64

Release 1 - Single Core

Release Note

https://community.arm.com/oss-platforms/w/docs/633/release-1-single-core

New Features

Introduced fvp-baser-aemv8r64 as a Yocto machine support the following BSP
components on the Yocto hardknott release branch, where a standard Linux kernel
can be built and run:

	boot-wrapper-aarch64

	Linux kernel: linux-yocto-5.10

Changed

Initial version.

Known Issues and Limitations

	Only support one CPU since SMP is not functional in boot-wrapper-aarch64 yet

Index

 _images/armv8r64-virtualization-refstack-arch.png

_images/armv8r64-virtualization-with-inter-vm-communication-and-docker.png
Domu-2

OpenAMP Framework

Event Channel

Domu-1
RPMsg Demo (pmsg-host)
OpenAMP Framework

‘Shared Memory

H
g
2
g
H
:
g
£
H

_images/armv8r64-software-stack-release-process.png
April

October

April

Tag:veZ

—

<codename-b>

—

<codename-a>

main

_images/armv8r64-virtualization-boot.png
Armv8-R Stack Boot flow (Virtualization - Xen Hypervisor)

SEL

[Xen Stack (image.wic)

Partiions: T

oot image €
Izephyrbin <-
Ipass_linux dib<--
Ipass_zephy.dtb<-
hen.dibo <
heny.
Iooot ser..

Zephyr kemel and appiication

Linux device tree passthrough

iZephyr device tree passthrough

(¥en device tree overiay

module@1 {

compatible = "multiboot,kernel”, "miltiboot,module”;
Feg = <x15000000 0x3c4d200>;

>

lete....

U-Boot boot script

Seteny suitcn_to_e11 0

load Virtio 0:1 6x10000000 /dtb/xen.dtbo

load virtio @71 @x15000000 Image

Load virtio 6:1ex14FF000 pass_Linux.dth
Load virtio 6:1 ex11000000 zephyr.bin

Load virtio 6:1 ox10PED00 pacs. zephyr.dtb

load virtio @:1 $kernel_addr_r xen
booti Skernel addr_r - fdt addr_r

[Unified Firmware (inux-system.axf) /’L
=

Boot-wrapper-aarch64

——> bootflow

i device tree flow

> component position

_images/yocto-release-process.png
April

October

April

i
g
i

-

a>

<codename-:

—

<codename-b>

_images/armv8r64-xen-stack.png
Disk image

Domain configuration Boot partition
Device fee.
XEN_DOMOLESS_DOMAINS = "XEN_DOMOLESS_DOM_LINUX \ * osemto] N .
et e e P > Overlay device tree Xenbinary '« Xen configuration
XEN_DOMOLESS_DOM_LINUX[binary] = “Image-fvp-baser-aemver64.bin" e
XEN_DOMOLESS_DOM_LINUX{passihiough. template] -\ > eneraton Zephyr passthiough| [Zephyr application Zephyr application
passihrough-inux template.dis’ > device tree image N configuration
XEN_DOMOLESS_DOM_ZEPHYR[binary] = “zephyrsynchronization bin® [Linux passthrough | []
Dt os ot [0 paSSITOUG | | el imagel
“passihrough-zephyr.template.dls”
> U-Boot boot script D
L Image generation N configuration
= configuration
= artifact Root filesystem partition
= process

«
inux root filesystem

_images/armv8r64-yocto-layers.png
meta-armvaréd-extras 8ré4 repo maintained

- .| meta-arm maintained
; meta-zephyr meta-openamy ;
| B D ; 3rd party repo
i [metaviruaiization meta-python :

L !

| e metatlosystoms | |
‘meta-yocto-bsp meta-networking i

metaambsp > meta-arm 5 metaamdtoolchain

_images/armv8r64-baremetal-refstack-arch.png
Roolfs (Poky Distro based)

U-Boot (with UEFI)

Boot-wrapper-aarch6é
(with PSCI Service)

_images/armv8r64-baremetal-zephyr-refstack-arch.png
Zephyr

AmVB-R AEM FVP (AArch4)

_images/armv8r64-baremetal-linux-boot.png
Armv8-R Stack Boot Flow (Baremetal Linux)

SEL

[Baremetal Linux (image wic)

Partiions:

Moot fimage <
Jefilbootigrub.cig
Jefilbootbootaa6d efi

' Tooffs fles

[Unified Firmware (linux-system axf)

Boot-wrapper-aarch64 U-Boot
Kernel device tree. Kernel device tree.
imemreserve > memresenve
firmware table firmware table

—_—

>

bootflow
device tree flow

component position

_images/armv8r64-demo-application-arch.png
Domu-2

Domu-1

RPMsg Demo (rpmsg-remote)

OpenAMP Framework

pmsg

virtio

Xen VM Armva-R Adaptor

Event Channel

OpenAMP Framework

pmsg
virtio

‘Shared Memory

nav.xhtml

 Table of Contents

 		
 Armv8-R AArch64 Software Stack

 		
 Introduction

 		
 Overview

 		
 Audience

 		
 Use Cases Overview

 		
 High Level Architecture

 		
 Features Overview

 		
 Documentation Overview

 		
 Repository Structure

 		
 Repository License

 		
 Issue Reporting

 		
 Feedback and Support

 		
 Maintainer(s)

 		
 Reference

 		
 User Guide

 		
 Reproduce

 		
 Environment Setup

 		
 Download

 		
 Build and Run

 		
 Validate

 		
 Reference

 		
 Extend

 		
 Extra Features

 		
 Customize Configuration

 		
 Customize Parameter

 		
 Reference

 		
 Borrow

 		
 Reusing the Firmware Patches

 		
 Reusing the Xen Patches

 		
 Reference

 		
 Developer Manual

 		
 Boot Process

 		
 Components

 		
 Boot-wrapper-aarch64

 		
 Bootloader (U-Boot)

 		
 Hypervisor (Xen)

 		
 Linux Kernel

 		
 Zephyr

 		
 Yocto Layers

 		
 Armv8-R AArch64 Extras Layer (meta-armv8r64-extras)

 		
 Zephyr Sample Applications

 		
 Virtualization Stack

 		
 Applications

 		
 Inter-VM Communication

 		
 Docker Container

 		
 Demo Applications

 		
 Validation

 		
 Run-Time Integration Tests

 		
 Test Suite

 		
 Basic Tests

 		
 Integration Tests Implementation

 		
 Codeline Management

 		
 Overview

 		
 Yocto Release Process

 		
 Armv8-R AArch64 Software Stack Branch and Release Process

 		
 License

 		
 SPDX Identifiers

 		
 Changelog & Release Notes

 		
 Release 5.0 - InterVM Communication with Linux Containers

 		
 New Features

 		
 Changed

 		
 Known Issues and Limitations

 		
 Release 4.0 - Xen

 		
 New Features

 		
 Changed

 		
 Known Issues and Limitations

 		
 Release 3 - UEFI

 		
 Release Note

 		
 New Features

 		
 Changed

 		
 Known Issues and Limitations

 		
 Release 2 - SMP

 		
 Release Note

 		
 New Features

 		
 Changed

 		
 Known Issues and Limitations

 		
 Release 1 - Single Core

 		
 Release Note

 		
 New Features

 		
 Changed

 		
 Known Issues and Limitations

_static/minus.png

_static/plus.png

_static/file.png

